Paper Code : CON:302

TH. (hours)Pr. (hours)InternalExternalTotalTh. (marks)Th. (marks)Th. (marks)100 (marks)	Teaching Hours (Per Week)		Examination Scheme		
(hours) Th. (marks) Th. (marks) 100 (marks)	TH.	Dr. (bours)	Internal	External	Total
IUU (marks)	(hours)	Pr. (nours)	Th. (marks)	Th. (marks)	100 (marks)
4 30 70 ¹⁰⁰ (marks)	4		30	70	

Paper Name : Computer Oriented Numerical Methods

Lectures 68 Hours = This course attempts to familiarize students with much needed concepts from **Objective** : numerical analysis. The numerical techniques offer computational frameworks to solve real-life problems. A good grounding of these concepts is essential for better understanding of topics such as Mobile Communications, Performance Modeling of Computer Networks, Soft Computing, Pattern Recognition, Image Processing, Data Mining.

UNIT 1

Computer Arithmetic

Number System, Conversion of Numbers, Representation of numbers, Floating point representation, Arithmetic operations with Normalized Floating point Numbers, consequences of normalization, pitfalls in computing.

Approximation and Errors

Significant digits, Types of errors, absolute and relative error.

Difference table, Forward and backward difference table.

UNIT 2

UNIT 3

UNIT 4

Roots of Nonlinear Equations

Convergence of Iteration methods.

Introduction, Methods of Solution, Iterative Methods, Bisection method, False position method, Netwon-Raphson method, Secant method, Rate of convergence of iterative methods.

Solution of simultaneous algebraic Equations Gauss elimination method, Pivoting, ill-conditioned systems, Gauss-Seidel iterative method,

Polynomial Interpolation Introduction, Polynomial Forms, Linear interpolation, Lagrange interpolation, Newton interpolation,

15 Hrs

15 Hrs

12 Hrs

12 Hrs

14 Hrs

UNIT 5

Numerical Integration

Trapezoidal Rule, Simpson's 1/3 rule, Simpson's 3/8 rule.

Numerical Solution of Ordinary Differential Equations

Taylor Series Method, Euler's method, Second and Fourth order Runga-Kutta methods.

RECOMMENDED BOOK

- 1. Balagurusamy, E., Numerical Methods, Tata McGraw Hill, 1999.
- 2. Rajaraman V., Computer Oriented Numerical Methods, 3rd Edition, Prentice Hall India, New Delhi, 1998.

Reference:

- 1. Stoor, Bullrich, Computer Oriented Numerical Methods, Springer-Verlag, 1998.
- 2. Krishnamurthy, E.V., Sen, S.K., Computer Based Numerical Algorithms, East West Press, 1998.
- 3. Jain, M.K., Iyengar, S.R.K., Jain R.K., Numerical Methods : Problems and Solutions, New Age Int.(P) Ltd., New Delhi, 1997.
- 4. Jain, M.K., Iyengar, S.R.K., Jain R.J., Numerical Methods for Scientific and Engineering Competition, New Age Int. (P)Ltd., New Delhi, 1997.
- 5. N Datta, Computer Oriented Numerical Methods, Vikas Publication House Pvt Ltd, 2004.
- 6. Timothy Sauer, Numerical Analysis, International Edition, Pearson, 2011
- 7. A. Wood, Introduction to Numerical Analysis, Pearson, 1999
- 8. Thangaraj, P., Computer Oriented Numerical Methods, PHI
- 9. Sastry, S.S, "Introductory Methods of Numerical Analysis", 4th ed. PHI, 2007.
- 10. Pal, S, "Numerical Methods- Principles, Analyses and Algorithms", Oxford University Press, 2009.